
meatpy
Release 0.0.3

Sep 20, 2023

Contents:

1 Installation 3
1.1 Overview of MeatPy . 3
1.2 Getting Started . 4

2 Credits 11

i

ii

meatpy, Release 0.0.3

The Market Empirical Analysis Toolbox for Python (MeatPy) is a Python module aimed at researchers studying
high-frequency market data feeds, focusing on full limit order book data. MeatPy aims to provide a set of standard,
user-friendly open-source tools to lower the bar to entry into advanced empirical market microstructure research.

MeatPy’s latest documentation is available at https://meatpy.readthedocs.io/en/latest/ and the source code is available
on GitHub.

MeatPy is a work in progress, and a lot remains to be done before we reach version 1.0. As of the current version,
MeatPy only supports Nasdaq ITCH 5.0 files.

Contents: 1

https://meatpy.readthedocs.io/en/latest/
https://github.com/vgreg/MeatPy

meatpy, Release 0.0.3

2 Contents:

CHAPTER 1

Installation

You can install MeatPy using pip install meatpy.

1.1 Overview of MeatPy

The Market Exchange Analysis Toolbox for Python (MeatPy) is a Python module aimed at researchers studying
high-frequency market data feeds, focusing on full limit order book data. MeatPy aims to provide a set of standard,
user-friendly open-source tools to lower the bar to entry into advanced empirical market microstructure research. The
documentation is available on Read the Docs and the source code is available on GitHub.

The three building blocks of the MeatPy workflow are the parser, the market processor, and the recorders.

1.1.1 Parser

The parser is in charge of reading the data files to extract messages. It can be used to convert message files in a
different format, to split full market data files into symbol-specific files and to feed messages to the market processor.

MeatPy implements a parser for Nasdaq ITCH 5.0:

1. ITCH50MessageParser

Reads and writes Nasdaq ITCH 5.0 binary files. It can split full market data files into symbol-specific files and
read messages to feed to the market processor. For more details on messages, see the Nasdaq TotalView-ITCH 5.0
Specification.

1.1.2 Market Processor

The market processor is the engine that allows processing for one symbol/day. It receives messages one at a time and
replays the day’s events, keeping track of the limit order book’s state.

MeatPy implements a market processor for Nasdaq ITCH 5.0:

1. ITCH50MarketProcessor

3

https://meatpy.readthedocs.io/en/latest/index.html
https://github.com/vgreg/MeatPy
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf

meatpy, Release 0.0.3

Handles messages according to the Nasdaq ITCH 5.0 specification.

1.1.3 Recorders

The market processor does not generate any output. Instead, attached recorders are used to record the desired output.
This allows for efficient processing and flexibility in what data is generated.

Once a recorder is attached to a market processor, it can react to events (e.g., trade messages, trading status changes,
limit order book updates, etc.) and record the desired data. Some recorders can be set to record only during specific
market states (e.g., regular trading) or at specific timestamps (e.g. every one minute).

MeatPy implements six types of recorders:

1. SpotMeasuresRecorder

Records certain metrics, such as best quotes and Kyle’s lambda.

2. LOBRecorder

Records snapshots of the limit order book. It supports parameters for limiting the recorder depth and level of detail.

3. ITCH50TopOfBookMessageRecorder

Records all messages that affect the top of the order book.

4. ITCH50OrderEventRecorder

Records order-related events, such as order additions, order executions, order cancelations, and order replacements.

5. ITCH50ExecTradeRecorder

Records executions and trades, including information about the executed limit order.

6. ITCH50OFIRecorder

Records the order flow imbalance.

See Equations (4) and (10) of Cont, R., et al. (2013). “The Price Impact of Order Book Events.” Journal
of Financial Econometrics 12(1): 47-88.

The recorder follows equation (10) but accounts for trades against hidden orders as well.

1.2 Getting Started

This section presents sample code for common use cases. The suggested workflow is the following:

• Step0_ExtractSymbols.py Extracting symbols from a Nasdaq ITCH file.

• Step1_Parsing.py Splitting Nasdaq ITCH files into per symbol individual ITCH files.

• Step2_Processing.py Process individual symbols.

1.2.1 Data

Sample Nasdaq ITCH files are available at ftp://emi.nasdaq.com/ITCH/. The following examples are based on the file
20190530.BX_ITCH_50.gz, which contains Nasdaq BX messages from May 30, 2019. The message format for
Nasdaq BX is the same as for the main Nasdaq exchange, but the files are smaller and thus more suited for examples.

Sample code files are located in the samples directory. The sample data file should be placed in the sample_data
directory.

4 Chapter 1. Installation

ftp://emi.nasdaq.com/ITCH/

meatpy, Release 0.0.3

1.2.2 Extracting symbols from a Nasdaq ITCH file

This program uses a ITCH50MessageParser to parse an individual Nasdaq ITCH 5.0 file and extract all the traded
symbols from stock directory messages. This can be useful to list all the symbols that are present in the file.

"""Sample code for extracting the symbols from a ITCH 5.0"""

import gzip
from meatpy.itch50 import ITCH50MessageParser

sample_dir = '../sample_data/'

fn = '20190530.BX_ITCH_50.gz'
outfn = 'Symbols_20190530_BX_ITCH.txt'

Initialize the parser
parser = ITCH50MessageParser()

Keep only the Stock Directory Messages
parser.keep_messages_types = b'R'

Stock Directory Messages are also copied in a separate list by the parser,
so we can avoid keeping track of stock-specific messages, which saves
memory.
parser.skip_stock_messages = True

Parse the raw compressed ITCH 5.0 file.
Note: This can take a while. If we were to run this on many files,
it might make sense to modify the message parser to stop after a given
number of messages since the stock directory messages are at the
start of the day.
with gzip.open(sample_dir + fn, 'rb') as itch_file:

parser.parse_file(itch_file)

We only care about symbols, so let's extract those.
symbols = [x.stock for x in parser.stock_directory]

Output the list of symbols, one per row.
lines = [x.decode() + '\n' for x in symbols]
with open(sample_dir + outfn, 'w') as out_file:

out_file.writelines(lines)

The first few lines of the output file look like this:

1.2. Getting Started 5

meatpy, Release 0.0.3

Table 1: Symbols_20190530_BX_ITCH.txt
A
AA
AAAU
AABA
AAC
AADR
AAL
AAMC
AAME
AAN
AAOI
AAON
AAP
AAPL
AAT

1.2.3 Splitting Nasdaq ITCH files

This program uses a ITCH50MessageParser to parse an individual Nasdaq ITCH 5.0 file and split the aggregate
daily Nasdaq file into symbol-specific valid Nasdaq ICTH 5.0 files for the desired symbols. The resulting files are
smaller, so it is more efficient for archival if only some symbols are needed. This makes parallel processing much
easier because symbol-specific files can be processed in parallel on one computer using multiple cores or on computing
clusters. Reading and writing ITCH files in binary format is also much faster than using human-readable formats such
as CSV.

"""Sample code for parsing a ITCH 5.0 file"""

import gzip
from datetime import datetime
from meatpy.itch50 import ITCH50MessageParser

sample_dir = '../sample_data/'

date = datetime(2019, 5, 30)
dt_str = date.strftime('%Y%m%d')

fn = dt_str + '.BX_ITCH_50.gz'

List of stocks to extract, in byte arrays.
Note that all Nasdaq ITCH symbols are 8 bytes long (ticker + whitespace)
stocks = [b'AAPL ', b'ALGN ']

Initialize the parser
parser = ITCH50MessageParser()

Setup parser to minimize memory use. A smaller buffer uses less memory
by writes more often to disk, which slows down the process.
parser.message_buffer = 500 # Per stock buffer size (in # of messages)
parser.global_write_trigger = 10000 # Check if buffers exceeded

We only want our stocks. This is optional, by default MeatPy
extracts all stocks.

(continues on next page)

6 Chapter 1. Installation

meatpy, Release 0.0.3

(continued from previous page)

parser.stocks = stocks

Set the output dir for stock files
Using a file prefix is good practice for dating the files.
It also avoids clashes with reserved filenames on Windows, such
as 'PRN'.
parser.output_prefix = sample_dir + 'BX_ITCH_' + dt_str + '_'

Parse the raw compressed ITCH 5.0 file.
with gzip.open(sample_dir + fn, 'rb') as itch_file:

parser.parse_file(itch_file, write=True)

1.2.4 Processing Nasdaq ITCH files

This program processes a symbol-specific ICTH 5.0 file to extract limit order book snapshots and data related to order
book events and executions.

While MeatPy does not have built-in multiprocessing support, multiple instances of this code can be executed in
parallel using Python’s multiprocessing package.

"""Sample code for processing ITCH 5.0 file and extracting measures"""
import gzip
import sys
from datetime import datetime
from meatpy.itch50 import ITCH50MessageParser, ITCH50MarketProcessor, \
ITCH50ExecTradeRecorder, ITCH50OrderEventRecorder
from meatpy.event_handlers import LOBRecorder
from meatpy import ExecutionPriorityException, \
VolumeInconsistencyException, ExecutionPriorityExceptionList

sample_dir = '../sample_data/'

parser = ITCH50MessageParser()

with open(sample_dir + 'BX_ITCH_20190530_ALGN.txt', 'rb') as itch_file:
parser.parse_file(itch_file)

There should only be one stock in the file.
stocks = [s for s in parser.stock_messages]
stock = stocks[0]

processor = ITCH50MarketProcessor(stock, datetime(2019, 5, 30))
Create a LOB recorder. By default, it records all LOB events.
That means we will have an event everytime an order enters or exits the book.
Create one to record the top of book (level 1), all events
tob_recorder = LOBRecorder()
We only care about the top of book
tob_recorder.max_depth = 1

We create another one to record 1-minute snapshots on the book
lob_recorder = LOBRecorder()
We only want every minute. Nasdaq timestamps are in nanoseconds since 12am.
seconds_range = [x * 1000000000 for x in range(34130, 57730+1, 60)]
seconds_range.sort(reverse=True)
lob_recorder.record_timestamps = seconds_range

(continues on next page)

1.2. Getting Started 7

meatpy, Release 0.0.3

(continued from previous page)

Create the trade recorder
trade_recorder = ITCH50ExecTradeRecorder()
Create the order event recorder
order_recorder = ITCH50OrderEventRecorder()

Attach the recorders to the processor
processor.handlers.append(tob_recorder)
processor.handlers.append(lob_recorder)
processor.handlers.append(trade_recorder)
processor.handlers.append(order_recorder)

Process the messages
for m in parser.stock_messages[stock]:

try:
processor.process_message(m)

except ExecutionPriorityException as e:
sys.stderr.write('Warning,' + stock.decode() +

',' + e.args[0] + ',"' + e.args[1] + ' (' +
str(e[2]) + ')"\n')

except VolumeInconsistencyException as e:
sys.stderr.write('Warning,' + stock.decode() +

',' + e[0] + ',"' + e[1] + '\n')
except ExecutionPriorityExceptionList as eList:

for e in eList.args[1]:
sys.stderr.write('Warning,' + stock.decode() +

',' + e.args[0] + ',"' + e.args[1] + ' (' +
str(e.args[2]) + ')"\n')

Output files
with gzip.open(sample_dir + 'tob.csv.gz', 'w') as outfile:

tob_recorder.write_csv(outfile, collapse_orders=True)
with gzip.open(sample_dir + 'lob.csv.gz', 'w') as outfile:

lob_recorder.write_csv(outfile, collapse_orders=False)
with gzip.open(sample_dir + 'tr.csv.gz', 'w') as outfile:

trade_recorder.write_csv(outfile)
with gzip.open(sample_dir + 'or.csv.gz', 'w') as outfile:

order_recorder.write_csv(outfile)

The first few lines of each output file look like this:

8 Chapter 1. Installation

meatpy, Release 0.0.3

Table 2: lob.csv (lob recorder, full book)
Timestamp Type Level Price Order ID Volume Order Timestamp
34130000000000 Ask 1 3010100 656801 400 34052727737823
34130000000000 Bid 1 2942000 669949 200 34085725901583
34190000000000 Ask 1 3010100 656801 400 34052727737823
34190000000000 Bid 1 2942000 669949 200 34085725901583
34250000000000 Ask 1 3010100 656801 400 34052727737823
34250000000000 Ask 2 3040000 845161 30 34202154392271
34250000000000 Ask 3 3142000 783433 100 34200414784684
34250000000000 Ask 4 3471000 774589 100 34200317659936
34250000000000 Bid 1 2958900 837589 200 34201826545548
34250000000000 Bid 2 2829900 783425 100 34200414765177
34250000000000 Bid 3 2502200 774585 100 34200317644668
34310000000000 Ask 1 3040000 845161 30 34202154392271
34310000000000 Ask 2 3142000 783433 100 34200414784684
34310000000000 Ask 3 3471000 774589 100 34200317659936

Table 3: or.csv (order event recorder)
Times-
tamp

Mes-
sageType

Buy-
SellIndica-
tor

Price Vol-
ume

Or-
derID

NewOrderIDAskPriceAsk-
Size

Bid-
Price

Bid-
Size

34052727727406AddOrder B 2954000400 656797 None None None None
34052727737823AddOrder S 3010100400 656801 None None 2954000 400
34084825837342Or-

derDelete
656797 3010100 400 2954000 400

34085725901583AddOrder B 2942000200 669949 3010100 400 None None
34200317644668AddOr-

derMPID
B 2502200100 774585 3010100 400 2942000 200

34200317659936AddOr-
derMPID

S 3471000100 774589 3010100 400 2942000 200

34200414765177AddOr-
derMPID

B 2829900100 783425 3010100 400 2942000 200

34200414784684AddOr-
derMPID

S 3142000100 783433 3010100 400 2942000 200

34200777056480Or-
derDelete

669949 3010100 400 2942000 200

34201826545548AddOrder B 2958900200 837589 3010100 400 2829900 100
34202154392271AddOrder S 304000030 845161 3010100 400 2958900 200
34272871221455Or-

derDelete
837589 3010100 400 2958900 200

34272871225602Or-
derDelete

656801 3010100 400 2829900 100

34471992679916AddOrder B 29926003 2939241 3040000 30 2829900 100

1.2. Getting Started 9

meatpy, Release 0.0.3

Table 4: tob.csv (lob recorder, top of book only)
Timestamp Type Level Price Volume N Orders
34052727727406 Bid 1 2954000 400 1
34052727737823 Ask 1 3010100 400 1
34052727737823 Bid 1 2954000 400 1
34084825837342 Ask 1 3010100 400 1
34085725901583 Ask 1 3010100 400 1
34085725901583 Bid 1 2942000 200 1
34200317644668 Ask 1 3010100 400 1
34200317644668 Bid 1 2942000 200 1
34200317659936 Ask 1 3010100 400 1
34200317659936 Bid 1 2942000 200 1
34200414765177 Ask 1 3010100 400 1
34200414765177 Bid 1 2942000 200 1
34200414784684 Ask 1 3010100 400 1
34200414784684 Bid 1 2942000 200 1

Table 5: tr.csv (trade recorder)
Timestamp MessageType Queue Price Volume OrderID OrderTimestamp
34703242608927 Exec Ask 3008000 31 4426365 34692733984765
34703242648024 Exec Ask 3008000 60 4426365 34692733984765
34729950074550 Exec Bid 3017000 4 4635649 34729950038510
35149267156862 ExecHid Bid 3025000 100
35290544186992 ExecHid Bid 3026200 100
35290544190321 ExecHid Bid 3026200 100
35290544574482 ExecHid Bid 3026200 100
35401142766421 ExecHid Bid 3027100 100
35518105042925 ExecHid Bid 3035200 75
35518105042925 ExecHid Bid 3035000 25
35574799640110 ExecHid Bid 3032500 75
35574799640110 ExecHid Bid 3032500 25
35703478335449 Exec Bid 3024500 17 7939453 35327271048191
35778872267499 ExecHid Bid 3023500 100

10 Chapter 1. Installation

CHAPTER 2

Credits

MeatPy was created by Vincent Grégoire (HEC Montréal) and Charles Martineau (University of Toronto). Javad YaAli
provided excellent research assistance.

11

http://www.vincentgregoire.com/
https://www.charlesmartineau.com/

	Installation
	Overview of MeatPy
	Getting Started

	Credits

